135 research outputs found

    Many Server Scaling of the N-System Under FCFS-ALIS

    Full text link
    The N-System with independent Poisson arrivals and exponential server-dependent service times under first come first served and assign to longest idle server policy has explicit steady state distribution. We scale the arrival and the number of servers simultaneously, and obtain the fluid and central limit approximation for the steady state. This is the first step towards exploring the many server scaling limit behavior of general parallel service systems

    Reversibility and further properties of FCFS infinite bipartite matching

    Full text link
    The model of FCFS infinite bipartite matching was introduced in caldentey-kaplan-weiss 2009. In this model there is a sequence of items that are chosen i.i.d. from C={c1,,cI}\mathcal{C}=\{c_1,\ldots,c_I\} and an independent sequence of items that are chosen i.i.d. from S={s1,,sJ}\mathcal{S}=\{s_1,\ldots,s_J\}, and a bipartite compatibility graph GG between C\mathcal{C} and S\mathcal{S}. Items of the two sequences are matched according to the compatibility graph, and the matching is FCFS, each item in the one sequence is matched to the earliest compatible unmatched item in the other sequence. In adan-weiss 2011 a Markov chain associated with the matching was analyzed, a condition for stability was verified, a product form stationary distribution was derived and the rates rci,sjr_{c_i,s_j} of matches between compatible types cic_i and sjs_j were calculated. In the current paper, we present several new results that unveil the fundamental structure of the model. First, we provide a pathwise Loynes' type construction which enables to prove the existence of a unique matching for the model defined over all the integers. Second, we prove that the model is dynamically reversible: we define an exchange transformation in which we interchange the positions of each matched pair, and show that the items in the resulting permuted sequences are again independent and i.i.d., and the matching between them is FCFS in reversed time. Third, we obtain product form stationary distributions of several new Markov chains associated with the model. As a by product, we compute useful performance measures, for instance the link lengths between matched items.Comment: 33 pages, 12 figure

    Local stability in a transient Markov chain

    Full text link
    We prove two propositions with conditions that a system, which is described by a transient Markov chain, will display local stability. Examples of such systems include partly overloaded Jackson networks, partly overloaded polling systems, and overloaded multi-server queues with skill based service, under first come first served policy.Comment: 6 page

    FCFS Parallel Service Systems and Matching Models

    Get PDF
    We consider three parallel service models in which customers of several types are served by several types of servers subject to a bipartite compatibility graph, and the service policy is first come first served. Two of the models have a fixed set of servers. The first is a queueing model in which arriving customers are assigned to the longest idling compatible server if available, or else queue up in a single queue, and servers that become available pick the longest waiting compatible customer, as studied by Adan and Weiss, 2014. The second is a redundancy service model where arriving customers split into copies that queue up at all the compatible servers, and are served in each queue on FCFS basis, and leave the system when the first copy completes service, as studied by Gardner et al., 2016. The third model is a matching queueing model with a random stream of arriving servers. Arriving customers queue in a single queue and arriving servers match with the first compatible customer and leave immediately with the customer, or they leave without a customer. The last model is relevant to organ transplants, to housing assignments, to adoptions and many other situations. We study the relations between these models, and show that they are closely related to the FCFS infinite bipartite matching model, in which two infinite sequences of customers and servers of several types are matched FCFS according to a bipartite compatibility graph, as studied by Adan et al., 2017. We also introduce a directed bipartite matching model in which we embed the queueing systems. This leads to a generalization of Burke's theorem to parallel service systems
    corecore